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Abstract

Perturbation methods are developed for Stefan problems with time-dependent boundary conditions. The methods

are applied to melting of ice in the half-plane, outward spherical solidification and outward cylindrical solidification of a

saturated liquid. The results are shown to compare well with those obtained by other numerical methods.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Like other branches of engineering, heat transfer

analysis during the past two decades has been developed

on numerical simulation. However, approximate ana-

lytical methods have continued to develop and provide

useful solutions to a variety of problems. One is the

method of perturbation expansion. A review of the lit-

erature in this specific area has appeared in [1].

Perturbation methods have been successfully applied

to Stefan problems with simple boundary conditions in

different geometries. The perturbation solutions for the

planar solidification of a saturated liquid with convec-

tion at the wall has been found by Pedroso and Domoto

[2], and Huang and Shih [3]. On the other hand, Pedroso

and Domoto [4], and Stephan and Holzknecht [5] have

found the perturbation solutions for outward spherical

and cylindrical solidifications. The present note develops

the perturbation methods for the phase change problems

with time-dependent boundary conditions and demon-

strates the high accuracy when compared to other nu-

merical solutions.

2. Melting in the half-plane

Consider the melting of ice initially at its freezing

temperature Tf in the half-plane x > 0 subject to a time-
dependent temperature change at x ¼ 0. The governing
equation for the process is

oT
ot

¼ o2T
ox2

; 0 < x < yðtÞ; t > 0 ð1Þ

with boundary conditions:

T ðx ¼ 0; tÞ ¼ f ðtÞ; T ðx ¼ yðtÞ; tÞ ¼ 0; ð2Þ

dy
dt

¼ �a
oT
ox

� �
x¼yðtÞ

; ð3Þ

where T is the temperature, x is the space variable, yðtÞ is
the position of the moving boundary and a ¼ cðTf �
TrefÞ=L is the Stefan number Ste, c is the specific heat
content, L is the latent heat and Tref is the reference
temperature selected such that f ðt ¼ 0Þ ¼ 1. Since yðtÞ is
expected to be a monotonic function of t, we may re-
place t by y as the second independent variable. By
making use of Eq. (3), Eq. (1) can be written as

o2T
ox2

¼ �a
oT
oy

oT
ox

� �
x¼y

: ð4Þ
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The boundary condition at x ¼ 0 is written as
T ¼ f ðtÞ ¼ F ðyÞ on x ¼ 0: ð5Þ

Now, we make the assumption that a is small, and derive
a three-term perturbation solution of the form

T ðx; yÞ ¼ T0ðx; yÞ þ aT1ðx; yÞ þ a2T2ðx; yÞ: ð6Þ

Substituting Eq. (6) into Eqs. (2) and (4), the governing

equations for T0, T1, and T2 will be

a0 :
o2T0
ox2

¼ 0;

T0ðx ¼ 0; yÞ ¼ F ðyÞ; T0ðx ¼ y; yÞ ¼ 0:

a :
o2T1
ox2

¼ � oT0
oy

oT0
ox

� �
x¼y

;

T1ðx ¼ 0; yÞ ¼ 0; T1ðx ¼ y; yÞ ¼ 0:

a2 :
o2T2
ox2

¼ � oT0
oy

oT1
ox

� �
x¼y

� oT1
oy

oT0
ox

� �
x¼y

;

T2ðx ¼ 0; yÞ ¼ 0; T2ðx ¼ y; yÞ ¼ 0:

ð7Þ

The solutions are, respectively,

T0ðx; yÞ ¼ F ðyÞð1� zÞ;

T1ðx; yÞ ¼ 1
6
F ðyÞzðz� 1Þ½F ðyÞðzþ 1Þ � F 0ðyÞyðz� 2Þ�;

T2ðx; yÞ ¼ �1
360
F ðyÞzðz� 1Þ F ðyÞ2ðz

h
þ 1Þð9z2 þ 19Þ

þ 10F 0ðyÞ2y2ðzþ 4Þ

þ 5F ðyÞF 0ðyÞyð3z2 þ 5zþ 17Þ

þ F ðyÞF 00ðyÞy2ðz� 2Þð3z2 � 6z� 4Þ
i
; ð8Þ

where z ¼ x=y. Thus, the position of the moving bound-
ary follows the equation

dy
dt

¼ �a
oT0
ox

�
þ a

oT1
ox

þ a2
oT2
ox

�
x¼y

¼ a
y
F ðyÞ � a2F ðyÞ 1

6
F 0ðyÞ

�
þ 1

3y

�

þ a3F ðyÞ 7

45y
F ðyÞ2

�
þ 5

36
F 0ðyÞ2y

þ 25
72

F ðyÞF 0ðyÞ � 13

360
F ðyÞF 00ðyÞy

�
: ð9Þ

Substituting back f ðtÞ for F ðyÞ, with the relations

dF ðyÞ
dy

¼ df ðtÞ
dt

dy
dt

� ��1

;
d2F ðyÞ
dy2

¼ d
2f ðtÞ
dt2

dy
dt

� ��2

;

Eq. (9) can be rewritten in the form

dy
dt

� �3
þ aðt; yÞ dy

dt

� �2
þ bðt; yÞdy

dt
þ cðt; yÞ ¼ 0; ð10Þ

where

aðt; yÞ ¼ � af ðtÞ
y

1

�
� a
3
f ðtÞ þ 7a

2

45
f ðtÞ2

�
;

bðt; yÞ ¼ a2f ðtÞf 0ðtÞ 1
6

�
� 25a
72

f ðtÞ
�
;

cðt; yÞ ¼ �a3f ðtÞy 5
36
f 0ðtÞ2

h
� 13

360
f ðtÞf 00ðtÞ

i
:

By solving the cubic equation (10), the value of dy=dt is
obtained and y can be found by numerical integration,
while the temperature distribution can be obtained by

substituting Eq. (8) into Eq. (6).

Since there is a singularity in Eq. (10) when y is close
to 1, an approximation is needed. As this occurs only for

small t, one possible simplification is to ignore the de-
rivatives of f ðtÞ. In this case, Eq. (10) becomes

dy
dt

¼ a
y
1

�
� a
3
f ðtÞ þ 7a

2

45
f ðtÞ2

�
ð11Þ

and the solution is

yðtÞ ¼ 2a
Z t

0

1

��
� a
3
f ðsÞ þ 7a

2

45
f ðsÞ2

�
ds

	1=2

: ð12Þ

3. Outward spherical solidification

Consider the outward spherical solidification of a

saturated liquid due to low temperature at the bound-

ary. The problem can be formulated as

oT
ot

¼ 1
r
o2ðrT Þ
or2

; 1 < r < yðtÞ; t > 0; ð13Þ

Nomenclature

L latent heat

T temperature

c specific heat content

r radial variable

t time variables

x space variable

yðtÞ position of moving boundary

Greek symbol

a Stefan number, Ste, dimensionless

Subscripts

f freezing

ref reference
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T ðr ¼ 1; tÞ ¼ f ðtÞ; T ðr ¼ yðtÞ; tÞ ¼ 1; ð14Þ
dy
dt

¼ a
oT
or

� �
r¼yðtÞ

: ð15Þ

As before, we use y as the second independent variable
instead of t. We rewrite Eqs. (13) and (14) as

1

r
o2ðrT Þ
or2

¼ a
oT
oy

oT
or

� �
r¼y

; ð16Þ

T ðr ¼ 1; yÞ ¼ F ðyÞ; T ðr ¼ y; yÞ ¼ 1: ð17Þ

Assume that there is a three-term perturbation solution

of the form

T ðr; yÞ ¼ T0ðr; yÞ þ aT1ðr; yÞ þ a2T2ðr; yÞ; ð18Þ

by substituting Eq. (18) into Eqs. (16) and (17), T0, T1
and T2 are found to satisfy:

a0 :
1

r
o2ðrT Þ
or2

¼ 0;

T0ðr ¼ 1; yÞ ¼ F ðyÞ; T0ðr ¼ y; yÞ ¼ 1:

a :
1

r
o2ðrT Þ
or2

¼ � oT0
oy

oT0
ox

� �
r¼y

;

T1ðr ¼ 1; yÞ ¼ 0; T1ðr ¼ y; yÞ ¼ 0:

a2 :
1

r
o2ðrT Þ
or2

¼ � oT0
oy

oT1
ox

� �
r¼y

� oT1
oy

oT0
ox

� �
r¼y

;

T2ðr ¼ 1; yÞ ¼ 0; T2ðr ¼ y; yÞ ¼ 0:

ð19Þ

yðtÞ is found to satisfy the same form of Eq. (10), with

aðt; yÞ ¼ �af ðtÞ½45y3 � 15af ðtÞy2 þ a2f ðtÞ2ð6y þ 1Þ�
45y4ðy � 1Þ ;

bðt; yÞ ¼ a2f ðtÞf 0ðtÞ½60y þ 7� af ðtÞð10y þ 1Þ�
360y3

;

cðt; yÞ ¼ �a3f ðtÞðy � 1Þ½17f 0ðtÞ2 þ 7f ðtÞf 00ðtÞ�
360y3

:

These can easily be obtained through a symbolic math-

ematics program.

Again, there is a singularity for small t. Since the
expression is much more complicated than in the plane

geometry case, we will ignore the change in f ðtÞ in de-
riving the initial approximation. Suppose f ðt ¼ 0Þ ¼ 1,
then yðtÞ satisfies

yðy � 1Þ 1
�

� a
3y

þ a2ð6y þ 1Þ
45y3

��1
dy ¼ dt:

Expanding the term in parentheses binomially and re-

taining terms up to Oða2Þ, we have

yðy
�

� 1Þ þ a
3
ðy � 1Þ � a2

45
1

�
� 1

y2

��
dy ¼ dt: ð20Þ

Integrating Eq. (20), gives

t ¼ ðy � 1Þ2 2y þ a þ 1
6

�
� a2

45y

�
: ð21Þ

4. Outward cylindrical solidification

In the case of outward cylindrical solidification, the

corresponding governing equation is

1

r
o

or
r
oT
or

� �
¼ a

oT
oy

oT
or

� �
r¼y

ð22Þ

subject to boundary conditions Eqs. (15) and (17). As-

suming a three-term perturbation solution of the form

Eq. (18), the corresponding system for T0, T1 and T2 will
be

a0 :
1

r
o

or
r
oT
or

� �
¼ 0;

T0ðr ¼ 1; yÞ ¼ F ðyÞ; T0ðr ¼ y; yÞ ¼ 1:

a :
1

r
o

or
r
oT
or

� �
¼ � oT0

oy
oT0
ox

� �
r¼y

;

T1ðr ¼ 1; yÞ ¼ 0; T1ðr ¼ y; yÞ ¼ 0:

a2 :
1

r
o

or
r
oT
or

� �
¼ � oT0

oy
oT1
ox

� �
r¼y

� oT1
oy

oT0
ox

� �
r¼y

;

T2ðr ¼ 1; yÞ ¼ 0; T2ðr ¼ y; yÞ ¼ 0:
ð23Þ

yðtÞ is found to satisfy the same form of Eq. (10), with

aðt; yÞ ¼ �af ðtÞ
128y5 ln y7

f128y4 ln y6� 32af ðtÞy2 ln y3ð2y2 ln y2

� 2y2 ln yþ y2� 1Þþ a2f ðtÞ2½y4ð48 ln y4� 112 lny3

þ 146 ln y2� 111 ln yþ 40Þ� 16y2ð2 ln y2

� 5 ln yþ 5Þþ 10 ln y2þ 31 ln yþ 40�g;

bðt; yÞ ¼ a2f ðtÞ
128y4 ln y6

f32y2 ln y3ðy2 ln y þ ln y � y2 þ 1Þ

� af ðtÞf 0ðtÞ½y4ð66 ln y3 � 149 ln y2 þ 140 ln y
� 56Þ þ y2ð40 ln y3 � 8 ln y2 � 80 ln y þ 112Þ
� 6 ln y3 � 19 ln y2 � 60 ln y � 56�g;

cðt; yÞ ¼ �a3f ðtÞ
128y3 ln y5

ff ðtÞf 00ðtÞ½2 ln y2ð3y4 þ 4y2 þ 3Þ � 13

� ln yðy4 � 1Þ þ 8ðy2 � 1Þ2� þ f 0ðtÞ2½2 ln y2ð7y4

þ 12y2 þ 7Þ � 29 ln yðy4 � 1Þ þ 16ðy2 � 1Þ2�g:

The initial approximation can be found in the same way

as in the case of outward spherical solidification, and the

resulting equation is
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5. Numerical results

We present one numerical example for each geometry,

here, for a ¼ 0:2. Since there are only a few examples
with known analytic solutions, we will compare the numer-

ical results with those obtained by other numerical meth-

ods. The test example for melting in the half-plane has

the boundary condition T ðx ¼ 0; tÞ ¼ f ðtÞ ¼ ð1� 0:2tÞ
which was studied by Mennig and €OOzis�ik [6]. Table 1
shows the position of the moving boundary at different

times. From the table, the results by the perturbation

method agree well with those obtained by Mennig

and €OOzis�ik and differ by at most 0.3% over the time

values listed.

In the cases of outward spherical and cylindrical so-

lidifications, the test example with boundary condition

T ðr ¼ 1; tÞ ¼ f ðtÞ ¼ �t2 is used. The problem is solved

by both the perturbation method and the enthalpy

method. Readers may refer to Caldwell and Kwan [7]

for details of the enthalpy method. The results obtained

by the two methods for the two geometries are shown in

Figs. 1 and 2. From the figures, clearly the results from

the two methods agree well. In fact, over the range

0 < t < 1:2, the maximum percentage difference between
the results is approximately 0.2%.

6. Conclusion

The perturbation method is used to solve the Stefan

problems with time-dependent boundary conditions for

different geometries. The results agree well with those

from other numerical methods.

Although the results presented are only for a ¼ 0:2
here, we can conclude from the application of the

method to test cases with time-independent boundary

conditions in the literature that the method proposed is

expected to perform well for a up to 0.5. If more terms
are included in the perturbation series, the method is

t ¼ a
4
ð2y2 ln y � y2 þ 1Þ þ a2ðy2 ln y þ ln y � y2 þ 1Þ

4 ln y

þ a3½y4ð8 ln y3 � 20 ln y2 þ 21 ln y � 8Þ � 16y2ðln y � 1Þ � 5 ln y � 8�
128y2 ln y4

: ð24Þ

Table 1

Position of moving boundary at different times for melting in

the half-plane

t y from [6] y from perturbation

0.1068 0.2000 0.1994

0.2441 0.3000 0.2995

0.4425 0.4000 0.3996

0.7094 0.5000 0.4995

1.057 0.6000 0.5994

1.508 0.7000 0.6995

2.103 0.8000 0.7995

2.951 0.9000 0.9000
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Fig. 1. Position of moving boundary yðtÞ at different times for
outward spherical solidification.
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Fig. 2. Position of moving boundary yðtÞ at different times for
outward cylindrical solidification.
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expected to work well for even larger a. Though the
algebra will become more complicated, it is still worth

doing in practice since the formulae can be reused for

different boundary conditions.
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